Manual SDKv. 3.6

WAC Fingerprint SDK

Introduction

The Software Development Kit (SDK) is intended for creation of biometric applications based on the
fingerprint recognition. It gives the developers the ability to enroll, verify and identify the fingerprint
templates.

This documentation assumes that a developer has a common impression about biometry and its
applications. Some important intentions are explained in the Concept terms.

To get a brief notion of biometric application design based on the application programming interface
(API1) you should look at the Application types.

The detailed explanation of APl functions and their parameters: SDK functions in alphabetical order.

Concept terms

Some concept terms used in this manual and everywhere in biometry are denoted in this section.

¢ The process of initial template construction is called enroliment. Some fingerprint images are
collected through the sensor device, their main properties are extracted and the result is
stored somewhere by an application for further comparison (matching).

¢ The comparison of templates can be organized as one-to-one or one-to-many matching. The
first case is called Verification and the second one is called Identification. Verification is used
whenever an application needs to check if a particular template looks like the previously built
template.

The Identification allows to find a group of templates among the source set, that are mostly "similar"
to the specified template. The result of this search can be either empty or can contain some
templates.

¢ Any kind of biometric authentication can be expressed only in terms of probability. The
significant reason of such situation is the fact that you cannot obtain two absolutely identical
fingerprints (or any other biometric measurements of a human) gathered in different sensor
touches.

The main score used herein shows the "trusted level" of any authentication operation and is called
False Accepting Rate (FAR). It denotes the probability that the source template falsely match the
presented template. If a particular FAR value is equal P, it means that an actual False Accepting Rate is
calculated as P/(2 exp 31 -1). The larger value implies the "softer" result. Instead of stochastic form a
user can specify the FAR value in the terms of Numerical form, which is designated as FTR_FARN. This
value denotes the calculated internal measure. The lower value reflects the “softer’ result.

Application types
A typical application execution flow depends on type of an application. The SDK introduces two types

of application:

e Application requires interaction with a user. The main task of that application is to capture
images from the attached sensor and to create templates appropriately to the specified

Page2

purpose. Such application can optionally perform any authentication operations. The API
caller gets a responsibility for writing interaction with a user in the form of prompts when it is
necessary to touch a sensor and when to take a finger from the sensor surface. Definitely, an
appropriate call must be issued to declare the usage of a sensor. Interactive application
example shows a typical function calls sequence.

e Application does not require any interaction with a user. An application that uses only the
matching mechanism and doesn't require user interaction has a simpler structure. Such
application employs only the series of FTRSetBaseTemplate and FTRIdentify function calls and
implements the core of authenticating center. A skeleton of Non-interactive application
example depicts the architecture of a typical authentication algorithm.

Interactive application example
// Application requires interaction with a user. if(FTRInitialize() != FTR_RETCODE_OK))

return;

// Use the specified sensor.
if(FTRSetParam(FTR_PARAM_CB_FRAME_SOURCE, FSD__USB) == FTR_RETCODE_OK){

// Get the frame dimensions.

FTRGetParam(FTR_PARAM_IMAGE_WIDTH, &dwWidth);
FTRGetParam(FTR_PARAM_IMAGE_HEIGHT, &dwHeight);
FTRGetParam(FTR_PARAM_IMAGE_SIZE, &dwsSize);

plmage = malloc(dwSize); // Reserve memory space for an image.

// Optional. Set the maximum number of frames in a template. This call must precede
// the FTRGetParam(FTR_PARAM_MAX_TEMPLATE_SIZE, ...) call.
FTRSetParam(FTR_PARAM_MAX_MODELS, 3);

// Get the maximum template size in bytes.

FTRGetParam(FTR_PARAM_MAX_TEMPLATE_SIZE, &dwTempSize);
FTR_DATA Template;

Template.pData = malloc(dwTempSize); // Reserve memory for a template.

// Establish the user interaction callback function.

// Note, that the cbUserSuppliedFunc must be declared accordingly to the FTR_CB_STATE_CONTROL,
// see details in the FTRAPI.h header file.

FTRSetParam(FTR_PARAM_CB_CONTROL, cbUserSuppliedFunc);

// Build a template for the verification purpose.
FTR_USER_CTX myContext;
FTREnroll(myContext, FTR_PURPOSE_ENROLL, &Template);

Page3

// Verify if a user matches the specified template with the FAR = 0.05 BOOL blsVerified; FTRSetParam(
FTR_PARAM_MAX_FAR_REQUESTED, 107374182); // 107374182 / (2*¥*31 -1) = 0.05 if(FTRVerify(
myContext, &Template, &blsVerified, NULL) == FTR_RETCODE_OK){

if(blsVerified){

// Proceed a match!

}

else{

// Match was not detected. } } }

FTRTerminate();

Non-interactive application example
// Application does not need to interact with a user. if(FTRInitialize() != FTR_RETCODE_OK) return;

DWORD dwBufCount = 4; // Number of buffered templates. FTR_DATA Templates[dwBufCount J;
FTR_IDENTIFY_RECORD IdRecords[dwBufCount]; FTR_IDENTIFY_ARRAY SourceData;

// Optional. Set the maximum number of frames in a template. This call must precede // the
FTRGetParam(FTR_PARAM_MAX_TEMPLATE_SIZE, ...) call. FTRSetParam(
FTR_PARAM_MAX_MODELS, 3);

// Get the maximum template size in bytes.
DWORD dwTempSize;
FTRGetParam(FTR_PARAM_MAX_TEMPLATE_SIZE, &dwTempSize);

// Dynamically allocate memory for the source templates.
LPSTR pBuffer;
pBuffer = malloc(dwBufCount * dwTempSize);

// Initialize source data.
SourceData.pMembers = IdRecords;
SourceData.TotalNumber = dwBufCount;
for(i=0; i< dwBufCount; i++){

IdRecords|i].pData = Templates + i; Templates[i].pData = pBuffer + dwTempSize * i; }

// Initialize memory for the matching data.
FTR_MATCHED_RECORD mr[3];

FTR_MATCHED_ARRAY ma;

ma.TotalNumber = sizeof(mr) / sizeof(FTR_MATCHED_RECORD);
ma.pMembers = mr;

Page4

// \dentify with the FAR = 0.01; (21474837 / 2147483647 = 0.01).
FTRSetParam(FTR_PARAM_MAX_FAR_REQUESTED, 21474837);

// Prepare the template to look for across the source template array.

if(FTRSetBaseTemplate(& Template) == FTR_RETCODE_OK){ FTRAPI_RESULT RetCode; DWORD
dwMatchCnt = 0; // This is important! The caller must properly initialize the // total number of
matched records before calling the FTRIdentify function within the cycle.

while(LoadNextSourcePortion(&SourceData) > 0){ // Search through the currently available portion
of templates. if((RetCode = FTRIdentify(&SourceData, &dwMatchCnt, &ma)) != FTR_RETCODE_OK)
break;

}

if(RetCode == FTR_RETCODE_OK && dwMatchCnt > 0){
// Do something with matched records.
for(i=0; i< dwMatchCnt; i++)

UseMatch(ma.pMembers[i].KeyValue); } }

FTRTerminate();

State callback function

Every biometric application that employs a capturing frame service needs to organize interaction with
a user. This interaction is implemented in the form of following advises:

¢ touch -means that it is the right moment to touch scanner surface;
* take off -a user must take his/her finger from the device surface.
Captured frames represent another kind of information that can be shown to a user.

The described information exchange is done over an application-supplied callback function with the
prototype

void (FTR CBAPI *FTR CB STATE CONTROL) (

FTR USER CTX Context, // [in] user-defined context information

FTR STATE StateMask, // [in] an arguments bit mask

FTR RESPONSE *pResponse, // [in, out] progress data or response from user
FTR SIGNAL Signal, // [in] signal value

FTR BITMAP PTR pBitmap // [in] a pointer to the bitmap to be displayed

Page5

Parameters

Context

[in] user-defined context information. This is the value passed via the UserContext parameter in
FTREnroll and FTRVerify functions.

StateMask

[in] a bit mask indicating what arguments are provided. This mask can be a combination of the
following constants:

State Meaning

FTR _STATE FRAME PROVIDED The pBitmap parameter provided.

FTR STATE SIGNAL PROVIDED The Signal parameter provided.
pPResponse

[in] pointer to the FTR_PROGRESS structure containing information on various aspects of frame
capturing progress.

To gain access to the structure members a caller must cast the value passed in this parameter to a
FTR_PROGRESS

pointer.

[out] pointer to a value indicating the required action from the calling API function. Any constant from
the following list

can be used. It is the application responsibility to set the appropriate value of this parameter.

Response code Meaning

FTR_CANCEL The calling function must return control as quickly as
possible. The caller returns the
FTR_RETCODE_CANCELED_BY_USER value.

FTR_CONTINUE The calling function can continue execution.

Signal

[in] this value should be used to interact with a user. Any separate constant from the following table
is passed to a callback function.

Signal value Description

Page6

Invitation for touching the fingerprint scanner

FTR_SIGNAL TOUCH_SENSOR
- - - surface.

Proposal to take off a finger from the scanner

FTR_SIGNAL TAKE OFF
- - - surface.

Notification on the Fake Finger Detection (FFD)

FTR_SIGNAL_FAKE_SOURCE
- - - event.

pBitmap
[in] a pointer to the bitmap to be displayed. The usage of this parameter is optional.

SDK functions listed in alphabetical order
The SDK functions listed in alphabetical order.

Function Description

FTRCaptureFrame Gets an image from the current frame source.

ETRENroll Creates the fingerprint template for the desired
purpose.

FTRGetParam Gets the value of the specified parameter.

FTRIdentify Compares the base template against a set of
source templates.

FTRInitialize Activates the SDK interface.

FTRSetBaseTemplate Installs a template as a base for identification
process.

FTRSetParam Sets the indicated parameter value.

FTRTerminate Deactivates the API.

FTRVerify Verifies a captured image against the specified
template.

FTRCaptureFrame

The FTRCaptureFrame function gets an image from the current frame source.

FTRAPI RESULT FTRCaptureFrame (
FTR_USER_CTX UserContext, // [in] opticnal wvalue

vold *pFrameBuf

)

// [in] pointer to the frame buffer

Page7

Parameters

UserContext

[in] -optional caller-supplied value that is passed to callback functions. This value is provided for
convenience in application design.

pFrameBuf

[in] points to a buffer large enough to hold the frame data. The size of a frame can be determined

through the

FTRGetParam call with the FTR_PARAM_IMAGE_SIZE value of the first argument.

Return values

If the function succeeds, it returns the FTR_RETCODE_OK code. Otherwise, the returned value
indicates an error.

Error code Description

FTR_RETCODE_INVALID_ARG Some parameters were not specified or had
invalid
values.

FTR_RETCODE_FRAME_SOURCE_NOT_SET Attributes of the frame image become
available only after setting the frame source.

FTR_RETCODE_CANCELED BY_USER User through the established callback
function

canceled operation.

FTR_RETCODE_INTERNAL_ERROR Internal SDK or Win32 API system error.

FTR_RETCODE_DEVICE_NOT_CONNECTED The frame source device is not connected.

FTR_RETCODE_DEVICE_FAILURE An error on the attached scanner. The
appropriate

Win32 error code describing the particular
error can

be got by calling the <FTRGetParam> function
with the value of the first argument set to
FTR_PARAM_SYS_ERROR_CODE.

Page8

FTR_RETCODE_FAKE_SOURCE

Fake finger was detected.

Comments

A user defined callback function must be set prior to the FTRCaptureFrame usage. To establish a
callback function, a caller must use the FTRSetParam function with the first parameter set to

FTR_PARAM_CB_CONTROL.

If the plugged scanner device is used by another application, this function waits for either of two
events comes first: the scanner becomes released or the FTR_CANCEL response fires through the
established user callback function. This can produce an infinite delay if neither of these events comes.

FTREnroll, FTREnrolIX

Both FTREnroll and FTREnrollX functions create the fingerprint template for the desired purpose.

FTRAPI_RESULT BFTREnrcll{
FTR_USER_CTX UserContext, [/
FTR_PURPOSE Purpose, I/
FTR_DATA PTR pTemplate ol

)i

FTRAPI RESULT FTREnrocllX{
FTR_USER_CTX UserContext, hdt
FTR_PURPOSE Purpose, Lot
FTR_DATA PTR pTemplate, ol
FTR_ENROLL_DATA PTR pEData //

)

Parameters

UserContext

[in] opticnal wvalue
[in] purpose of template building
[cut] pointer to a result memory buffer

in] opticnal wvalue

in] purpose of template building

out] pointer te a result memory buffer

out] opticnal pointer to the FTR_ENROLL_DATA structure

[in] -optional caller-supplied value that is passed to callback functions. This value is provided for

convenience in application design.

Purpose

[in] -the purpose of template building. This value designates the intended way of further template

usage and can be one of the following:

Value Meaning

FTR_PURPOSE_ENROLL The created template is suitable for both
identification and verification purpose.

FTR_PURPOSE_IDENTIFY Corresponding template can be used only for
identification as an input for the FTRSetBaseTemplate

function.

Page9

pTemplate

[out] -pointer to a result memory buffer. A caller must reserve the space for this buffer. Maximum
space amount can be determined through the FTRGetParam call with the
FTR_PARAM_MAX_TEMPLATE_SIZE value of the first argument.

pEData

[out] -optional pointer to the FTR_ENROLL_DATA structure that receives on output additional
information on the results of the enroliment process. The caller must set the dwSize member of this
structure to sizeof(FTR_ENROLL_DATA) in order to identify the version of the structure being passed.

If a caller does not initialize dwSize, the function fails.

Return values

If the function succeeds, it returns the FTR_RETCODE_OK code. Otherwise, the returned value

indicates an error.

Error code

Description

FTR_RETCODE_INVALID_ARG

Some parameters were not specified or had
invalid

values.

FTR_RETCODE_FRAME_SOURCE_NOT_SET

Attributes of the frame image become
available only after setting the frame source.

FTR_RETCODE_CANCELED_BY_ USER

User through the established callback
function

canceled operation.

FTR_RETCODE_INTERNAL_ERROR

Internal SDK or Win32 API system error.

FTR_RETCODE_DEVICE_NOT_CONNECTED

The frame source device is not connected.

FTR_RETCODE_DEVICE_FAILURE

An error on the attached scanner. The
appropriate

Win32 error code describing the particular
error can

be got by calling the FTRGetParam function
with the value of the first argument set to

Pagel0

FTR_PARAM_SYS_ERROR_CODE.

FTR_RETCODE_FAKE_SOURCE Fake finger was detected.

Comments

A user defined callback function must be set prior to the FTREnroll usage. To establish a callback
function, a caller must use the FTRSetParam function with the first parameter set to
FTR_PARAM_CB_CONTROL.

If the plugged scanner device is used by another application, this function waits for either of two
events comes first: the scanner becomes released or the FTR_CANCEL response fires through the
established user callback function. This can produce an infinite delay if neither of these events comes.

FTRGetParam

The FTRGetParam function gets the value of the specified parameter.
FTRAFPI RESULT FTRGetParam!
FTR_PARLEM Param, // [in] reguested parameter
FTR_PARAM VALUE *pValue // [out] parameter wvalue
)
Parameters

Param

[in] indicates the parameter which value must be obtained. Supported parameters are described in
the following table. The Type column specifies the type of data addressed by pValue.

Value Type Meaning

FTR_PARAM_IMAGE_WIDTH DWORD Width of the frame image
on the attached device
measured in pixels.

FTR_PARAM_IMAGE_HEIGHT DWORD Height of the frame image
on the attached device
measured in pixels.

Size of the frame image in

FTR_PARAM _IMAGE_SIZE DWORD
- - - bytes.

FTR_PARAM_CB_FRAME_SOURCE DWORD Type of the frame source.

Pagell

FTR_PARAM_CB_CONTROL

FTR_CB_STATE_CONTROL

Caller-supplied callback
function used for
interaction with a user
during enroliment or
verification.

FTR_PARAM_MAX_TEMPLATE_SIZE

DWORD

Maximum template size in
bytes.

FTR_PARAM_MAX_FAR_REQUESTED

FTR_FAR

FAR level used for
verification and/or
identification.

FTR_PARAM_MAX_FARN_REQUESTED

FTR_FARN

FAR level used for
verification and/or
identification.

FTR_PARAM_SYS_ERROR_CODE

DWORD

An error code returned by
the Win32 GetLastError()
function in the case of the
device failure. Use this
value if you’ve got the
FTR_RETCODE_DEVICE_FAIL
URE code upon a FTR API
call completion.

FTR_PARAM_FAKE_DETECT

BOOL

Operating mode of device.
Determines whether a fake
finger detection mechanism
is activated.

Page12

FTR_PARAM_FFD_CONTROL
FTR_PARAM_MAX_MODELS

FTR_PARAM_MIOT_CONTROL

FTR_PARAM_VERSION

BOOL DWORD BOOL Indicates whether a calling
DWORD application has taken a
control over the Fake Finger
Detection (FFD) event. If
this value is set to TRUE an
application receives
notification on any FFD
event through the caller-
supplied callback function.
Maximum number of
frames in a template that is
suitable both for verification
and identification purpose.
Indicates if the Multifingers
In One Template (MIOT)
feature is enabled. With this
value set to TRUE different
fingers cannot be combined
in the same template during
the enrollment process.
Version number
compatibility. Returns one
of the following values:
FTR_VERSION_PREVIOUS,
FTR_VERSION_COMPATIBLE
, FTR_VERSION_CURRENT.
See the FTRSetParam
function for more details.

pValue

[out] pointer to a variable which receives the requested parameter value.

Return values

If the function succeeds, it returns the FTR_RETCODE_OK code. Otherwise, the returned value

indicates an error.

Error code

Description

FTR_RETCODE_INVALID_ARG

Some parameters were not invalid
specified or had

values.

Pagel3

FTR_RETCODE_FRAME_SOURCE_NOT_SET Attributes of the frame image le only
become availabsetting the frame after
source.

Comments

Either of the two values can be returned if a caller issues a frame source request:
e FSD__USB -a USB Fingerprint Scanner Device has been set as a frame source.

¢ FSD_UNDEFINED -a frame source has not been set.

FTRIdentify

The FTRIdentify function compares the base template against a set of source templates. The matching
is performed in terms of FAR (False Accepting Ratio), which designates the probability of falsely
matching of the base template to the source template.
FTRAPI_RESULT FTRIdentify {
FTR_IDENTIFY ARRAY PTR pAldent, // [in] peinter to the set of scurce templates
DWORD *pdwMatchCnt, // [in,out] number of matched records

FTR MATCHED ARRAY PTR pAMatch // [in,cut] pointer to the array of matched records
1

FTRAPI RESULT FTRIdentifyN/{
FTR_IDENTIFY ARRAY PTR pATdent, // [in] pointer to the set of source templates
DWORD *pdwMatchCnt, // [in,out] number of matched records
FTR_MATCHED_X_ARRAY PTR paAMatch // [in,cut] peinter to the array of matched records

1

Parameters

PAIdent

[in] -points to a set of the source templates.

pdwMatchCnt

[in,out] -pointer to a number of matched records in the array pointed to by the pAMatch argument.
Before entering the identification loop the number of matched records must be initialized to 0.

pAMatch

[in,out] -pointer to the array of matched records. A caller is responsible for reserving appropriate
memory space and proper initialization of this structure.

Return values

Pagel4

If the function succeeds, it returns the FTR_RETCODE_OK code. Otherwise, the returned value
indicates an error.

Error code Description

Some parameters were not specified or had invalid

FTR_RETCODE_INVALID ARG
- - - values.

FTR_RETCODE_INVALID_PURPOSE There is a template built with the purpose other than
FTR_PURPOSE_ENROLL value in the pAldent array.

Comments

Note, that in the successful completion the value pointed to by the pdwMatchCnt argument contains
the number of matching templates, i.e. if this value is set to 0, there were no matching source
templates detected, otherwise the most probable results are represented in the pAMatch array
ordered descending by their probability.

The matching is performed according to the current FAR level, that can be set via the FTRSetParam
call with the value of the first argument set either to the FTR_PARAM_MAX_FAR_REQUESTED or to
the FTR_PARAM_MAX_FARN_REQUESTED value.

FTRInitialize

The FTRInitialize function activates the SDK interface. This function must be called before any other
API call.

FTRAPI RESULT FTRInitialize(void);

Return values

If the function succeeds, it returns the FTR_RETCODE_OK code. Otherwise, the returned value
indicates an error.

Error code Description

The current process has initialized the

FTR_RETCODE_ALREADY_IN_USE | || API.

Not enough memory to

FTR_RETCODE_NO_MEMORY
- - = perform t

he operation.

FTRSetBaseTemplate

Pagel5

The FTRSetBaseTemplate function installs a template as a base for identification process. The passed
template must have been enrolled for identification purpose, i.e. the FTR_PURPOSE_IDENTIFY
purpose value must be used for its enrollment. Identification process is organized in one or more
FTRIdentify calls.

FTRAPI RESULT FTRSetBaseTemplate (

FTR DATA PTR pTlemplate // [in] pointer to a previously enrclled template
)i
Parameters

pTemplate

[in] -pointer to a previously enrolled template.

Return values

If the function succeeds, it returns the FTR_RETCODE_OK code. Otherwise, the returned value
indicates an error.

Error code Description

FTR_RETCODE_INVALID_ARG Some parameters were not specified or had
invalid
values.

FTR_RETCODE_INVALID_PURPOSE The input template was not built with the
FTR_PURPOSE_IDENTIFY purpose.

FTRSetParam

The FTRSetParam function sets the indicated parameter value.
FTRAPI RESULT FTRSetParami
FTR_PARAM Param, // [in] parameter to be set
FTR_FPARAM VALUE Value // [in] parameter wvalue
)
Parameters

Param

[in] indicates the parameter which value must be set. Supported parameters are described in the
following table. The Type column specifies the type of data passed in the Value argument.

Value Type Meaning

Pagel6

FTR_PARAM_CB_FRAME_SOURCE

DWORD

Type of the frame source.

FTR_PARAM_CB_CONTROL

FTR_CB_STATE_CON
TROL

Caller-supplied callback function used
for interaction with a user during
enrollment or verification.

FTR_PARAM_MAX_FAR_REQUESTED

FTR_FAR

FAR level used for verification and/or
identification.

FTR_PARAM_MAX_FARN_REQUESTED

FTR_FARN

FAR level used for verification and/or
identification.

FTR_PARAM_FAKE_DETECT

BOOL

Operating mode of device. Determines
whether a fake finger detection
mechanism is activated.

FTR_PARAM_FFD_CONTROL

BOOL

Indicates whether a calling application
takes a control over the Fake Finger
Detection (FFD) event. If this value is
set to TRUE an application receives
notification on any FFD event through
the caller-supplied callback function.

FTR_PARAM_MAX_MODELS

DWORD

Maximum number of frames in a
template that is suitable both for
verification and identification purpose.
This value can vary from 3 to 10 and is
equal to 7 by default.

FTR_PARAM_MIOT_CONTROL

BOOL

Indicates if the Multifingers In One
Template (MIOT) feature is enabled.
With this value set to TRUE different
fingers cannot be combined in the same
template during the enroliment
process.

FTR_PARAM_VERSION

DWORD

This parameter denotes the mode of
SDK functioning and can be evaluated
as: -FTR_VERSION_CURRENT -the SDK
uses the current version of algorithm
with better statistic results. This value
should be used for the new fingerprint
data bases creation; -
FTR_VERSION_PREVIOUS -the

Pagel7

algorithm from previous SDK version 3.0 is
selected. This value can be advised to
clients, which have fingerprint data bases
already created and they are totally satisfied
with using of SDK 3.0;
-FTR_VERSICN_COMPATIBLE - the
combined version, which allows a gradual
update to the current version with better
statistic results. This value is selected by
default during SDK 3.6 initialization.

Value

[in] the value of the specified parameter.

Return values

If the function succeeds, it returns the FTR_RETCODE_OK code. Otherwise, the returned value
indicates an error.

Error code Description

FTR_RETCODE_INVALID_ARG Some parameters were not specified invalid
or had

values.

Not enough memory to perform the

FTR_RETCODE_NO_MEMORY .
- - - operation.

Comments

To set a frame source use the FSD___USB value, which requires that a USB Fingerprint Scanner Device
must be plugged in any available USB port. To clear the specified frame source if that has been
previously set, use the FSD_UNDEFINED value.

The maximum template size value depends on a maximum number of frames in a template. This
means that if a caller employs his/her own maximum number of frames he/she must invoke the
FTRSetParam(FTR_PARAM_MAX_MODELS, ...) function before the
FTRGetParam(FTR_PARAM_MAX_TEMPLATE_SIZE, ...) call.

FTRTerminate

The FTRInitialize releases all previously allocated resources and completes the APl usage. This call
must be the last API call in the case of SUCCESSFULL FTRInitialize return.

void FTRTerminate(void) ;

Pagel8

FTRVerify

The FTRVerify function captures an image from the currently attached frame source, builds the
corresponding template and compares it with the source template passed in the pTemplate
parameter.

FTRAPI RESULT FTRVerify{

FTR_USER_CTX UserContext, // [in] opticnal wvalue

FTR_DATA PTR pTemplate, // [in] pointer to a scurce template

BOOL, *pResult, // [out] polnts to the result of verification
FTR_FAR *pFARVerify // [out] opticnal FAR level achiewved

i

FTRAPI_RESULT FTRVerifyN/{

FTR_USER_CTX UserContext, // [in] opticnal wvalue
FTR_DATA PTR pTemplate, // [1in] pointer to a source template
BOOL *pResult, // [out] polnts to the result of verification
FTR_FARN *pFARVerify // [out] opticnal FAR level achieved
)i
Parameters
UserContext

[in] -optional caller-supplied value that is passed to callback functions. This value is provided for
convenience in application design.

pTemplate

[in] -pointer to a source template for verification.

pResult

[out] -points to a value indicating whether the captured image matched to the source template.

pFARVerify

[out] -points to the optional FAR level achieved.

Return values

Pagel9

If the function succeeds, it returns the FTR_RETCODE_OK code. Otherwise, the returned value

indicates an error.

Error code

Description

FTR_RETCODE_INVALID_ARG

Some parameters were not specified or had
invalid

values.

FTR_RETCODE_INVALID_PURPOSE

The input template was not built with the
FTR_PURPOSE_ENROLL purpose.

FTR_RETCODE_FRAME_SOURCE_NOT_SET

Attributes of the frame image become
available only after setting the frame source.

FTR_RETCODE_CANCELED_BY_USER

User through the established callback
function

canceled operation.

FTR_RETCODE_INTERNAL_ERROR

Internal SDK or Win32 API system error.

FTR_RETCODE_DEVICE_NOT_CONNECTED

The frame source device is not connected.

FTR_RETCODE_DEVICE_FAILURE

An error on the attached scanner. The
appropriate

Win32 error code describing the particular
error can

be got by calling the FTRGetParam function
with the value of the first argument set to
FTR_PARAM_SYS_ERROR_CODE.

FTR_RETCODE_FAKE_SOURCE

Fake finger was detected.

Comments

A user defined callback function must be set prior to the FTRVerify usage. To establish a callback

function, a caller must use the FTRSetParam function with the first parameter set to

FTR_PARAM_CB_CONTROL.

If the plugged scanner device is used by another application, this function waits for either of two
events comes first: the scanner becomes released or the FTR_CANCEL response fires through the
established user callback function. This can produce an infinite delay if neither of these events comes.

The matching is performed according to the current FAR level, that can be set via the FTRSetParam
call with the value of the first argument set either to the FTR_PARAM_MAX_FAR_REQUESTED or to

Page20

the FTR_PARAM_MAX_FARN_REQUESTED value.
SDK structures definitions
FTR_ENROLL_DATA

This structure presents features of the successfully created template.

typedef struct {
DWORD dwsize;
DWORD dwQuality;

} FTR _ENROLL DATA;

Members

dwSize

Specifies the size of the structure in bytes.
dwQuality

Estimation of a template quality in terms of recognition scale: the lowest value 1 corresponds to the
worst quality, 10 denotes the best quality.

Comments

A calling application can access the template quality through the FTREnrollX function.

See also

FTREnrollX

FTR_PROGRESS

This structure holds the frame capture progress information.

Ltypedef struct |
DWORD dwSize;
DWORD dwCount;
BOOL bIsRepeated;
DWORD dwTotal;

} FTR PROGRESS;

Members

dwSize

Page21

Specifies the size of the structure in bytes.

dwCount

Currently requested frame number.

bIsRepeated

Flag indicating whether the frame is requested not the first time.

dwTotal

Total number of frames to be captured.

Comments

A calling application receives a pointer to this structure through the state callback function.

Page22

